Евразия

Западно-Тихоокеанский пояс в палеогене представлял собой область молодых складчатых сооружений, в пределах которой площади, занятые осадконакоплением, были очень невелики. Здесь, на севере Верхояно-Чукотской области известны палеогеновые континен­тальные отложения с пластами каменных и бурых углей. Часто встре­чаются и эффузивы.
В пределах Урало-Сибирской эпипалеозойской плат­формы почти до конца палеогена сохранялась обстановка, возникшая в верхнемеловую эпоху: все плиты, впадины и прогибы были перекрыты морем. Оно заходило и в область восточного склона Урала и на Южный Урал. В нем накапливались пески, в том числе и глауконитовые, глины, опоки, диатомиты, трепелы, а на юге, в Таджикистане, и известняки. Здесь же на юге известны и горизонты эффузивных и эффузивно-оса-дочных пород. С палеоценовыми отложениями Западной ибири свя­заны месторождения марганца (Полуночное), а палеогеновые извест­няки в Таджикистане богаты нефтью. На юге известны также палео­геновые месторождения фосфоритов.
В конце палеогена происходит общее поднятие Урало-Сибирской платформы и здесь повсеместно устанавливается континентальный режим.
Скифская плита. Палеогеновые отложения продолжаются в район Скифской плиты из области Северного склона Кавказа и делятся здесь на те же две свиты: фораминиферовую и майкопскую. Майкоп­ская свита распространена в пределах этой плиты очень широко и является основной нефтеносной свитой.

Палеонтологический метод

Это наиболее надежный ме­тод относительной геохронологии, позволяющий определять относи­тельный возраст пород и в одном и в нескольких разрезах, в том числе и удаленных друг от друга на большие расстояния. Сущность этого метода состоит в определении относительного возраста осадочных по­род по окаменевшим остаткам организмов, которые содержатся во многих осадочных и некоторых метаморфических породах.
Каждый период геологической истории Земли характеризуется только ему свойственной совокупностью различных организмов. По­этому если породы в разных, даже далеко отстоящих разрезах содер­жат одинаковые органические остатки, можно считать, что эти породы образовались в одно время (рис. 68). Если же органические остатки разные, значит породы образовались или в разное время, или в одно и то же время, но в разных условиях. Окончательное решение этого во­проса возможно лишь поле выяснения условий оразования этих пород.
Однако далеко не все органические остатки позволяют одинаково хорошо определять относительный возраст горных пород. Некоторые организмы жили на Земле очень долго и при этом мало изменялись. В Средиземном море, например, до сих пор живет головоногий мол­люск Nautilus danicus, появившийся еще в ордовике. Очевидно, для определения относительного возраста горных пород такие ископаемые не подходят. В связи с этим и появилось понятие о руководящей фауне. Это организмы, которые:
недолго жили на Земле или быстро изменялись, вследствие чего в разрезе земной коры они имеют небольшое вертикальное распростра­нение, встречаются только в одном ограниченном горизонте;
широко расселялись в пространстве и потому позволяют увя­зывать и сопоставлять далеко расположенные друг от друга разрезы;
хорошо сохраняются в ископаемом состоянии и в одном и том же месте присутствуют в большом числе экземпляров.

Структуры морского и океанического дна

Геологическое изучение морского и океанического дна позволило выявить следующие особенности их строения   и состава    (рис.   76).
Мощность океанической земной коры колеблется от 4 до 15 км, мощность земной коры на материках изменяется в пределах 15—80 км.
В океанах отсутствует «гранитный» слой, развитый на матери­ках. Иногда в области океанических плит вместо него наблюдается так называемый «второй» слой — слой уплотненных осадков или вул­каногенного материала.
Мощность «базальтового» слоя в пределах океанов меньше (4—15 км), чем на материках (10—40 км).
Мощность осадков на океанических платформах также значи­тельно меньше, чем на материках (до 1—2 км).
Анализ этих данных показывает, что базальтовый слой распро­странен повсеместно, а гранитный только на материках, т. е. там, где земная кора прошла геосинклинальную стадию развития. Так как в области океанов ранитный слой отсутствует, можно думать, что зем­ная кора в области океанов находится в догеосинклинальной стадии и что развитие земной коры направлено от океанической стадии к плат­форменной.

Геосинклинальные пояса

В Урало — Сибирском геосинклинальном поясе под­нимаются складчатые сооружения Северного Тянь-Шаня, Центрального Казахстана, Горного Алтая, Кузнецко-Саянской области, Западного Забайкалья. В пределах поднимающихся каледонид силурийские отло­жения или отсутствуют, или представлены наземными грубообломоч-ными красноцветными песчано-глинистыми отложениями. И только изредка в них присутствуют горизонты морских отложений. Местами, например в Восточном Казахстане, развиваются эффузивные процессы и накапливаются туфы и лавы.
На Урале, в Южном Тянь-Шане, Рудном Алтае и в других обла­стях Урало-Сибирского пояса, где каледонские движения не получили значительного развития, в силуре преобладает прогибание и морской режим. В восточной зоне Урала, как и в ордовике, накапливаются грап-толитовые и кремнистые сланцы, песчаники, туфы и лавы основного состава. В западной зоне Урала в первой половине силура накапли­вался терригенный материал, сносившийся с приподнятых областей Русской платформы, а во второй половине силура поступление обло­мочного материала с запада прекращается и в западной зоне накап­ливаются мощные толщи известняков, нередко органогенного проис­хождения.

Триасовый период

В 1834 г. Альберти назвал триасовой системой выделенные Вернером еще в 18 веке три свиты: пестрый мергель (кейпер), раковинный известняк и пестрый песчаник.
Разделение триасовой системы, принятое в СССР, указано в табл. 8. Некоторые геологи относят рэтский ярус к нижней юре.
Нижний триас в других странах общепринятого подразделения на ярусы не имеет. Чаще всего нижний триас делят на кампильский и сей-ский ярусы; иногда их объединяют в скифский ярус.
Продолжительность триасового периода 35 млн. лет.
Таблица 8
 
Продолжительность триасового периода

Неогеновый период

В 1853 г. австралийский ученый М. Гернес назвал неогеном, что означает в переводе «новая геологическая обстановка», новый этап в развитии Земли, когда география и органический мир Земли уже были очень похожи на то, что мы наблюдаем в настоящее время. Продолжи­тельность неогенового периода 25 млн. лет.
Таблица 12
Стратиграфическое расчленение неогена (по С. С. Кузнецову)
 
 Стратиграфическое расчленение неогена

Методы определения относительного возраста магматических пород

Все магматические породы по условиям их образования делятся на породы интрузивные (глубинные) и породы эффузивные (излив­шиеся). Относительный возраст и тех и других определяется по соот­ношению их с вмещающими осадочными породами.
При определении относительного возраста интрузии считают, что она моложе тех пород, которые ею прорваны, так как такое соотноше­ние могло возникнуть только в том случае, если вмещающая порода существовала до внедрения в нее магмы. С другой стороны, интрузив­ная порода всегда древнее пород, залегающих на ее размытой поверх­ности. Такой характер контакта интрузивной породы с вышележащей указывает на то, что интрузия уже существовала до того, как стали накапливаться породы, лежащие выше поверхности размыва. Если контакт интрузии с вышележащей толщей не является поверхностью размыва, считать интрузию более древней, чем вышележащая толща, нельзя, так как любая интрузия образуется при остывании агмы в глубине, и выше нее всегда есть толща, образовавшаяся еще до внед­рения магмы в земную кору.

Докембрий. Догеологическая стадия развития земли

Геологическая стадия развития Земли—это тот этап ее развития, от которого остались геологические документы — горные породы. Предшествующую ей стадию, от которой не сохранилось никаких доку­ментов, называют догеологической.
Догеологическая стадия начинается с того времени, когда Земля сформировалась как планета. По современным представлениям Земля образовалась как сгусток холодной космической пыли и газа. В последующее время этот сгусток — Протоземля — уплотнялся, и зем­ные недра, как это показывают расчеты, постепенно разогревались за счет радиоактивного распада. Высокие температуры привели к диффе­ренциации вещества Земли: вода, водород, СO2 и другие газы, а также смеси, состоящие из легкоплавких силикатных компонентов (SiO2, А12O3, CaO, Na2O, К2О, MgO, частично Fe2O3 и др.), и радиоактивные элементы начали подниматься в верхние слои. Эта легкоплавкя фаза по составу соответствовала базальтической магме.   Тугоплавкая   же часть осталась внизу, образовав перидотиты, дуниты — породы верхней мантии. В последующее время из базальтической магмы выделились газы, образовавшие атмосферу, и водные растворы, которые дали на­чало гидросфере. Силикатная магма образовала   базальтовый   слой.

Платформы

Русская платформа. Силурийские отложения на Русской платформе распространены значительно меньше, чем ордовикские. Они известны в Прибалтике, в Подолии и на Северном Тимане. Это морские карбонатные и глинисто-карбонатные отложения с богатой фауной. Кроме этих отложений здесь известны и отложения лагун — мергели и глины.
Таким образом, в силуре в северо-западной части Русской плат­формы существовал такой же внутриконтинентальный бассейн, как и в ордовике, но его размеры были значительно меньше. К концу си­лура этот бассейн исчезает, так как Русская платформа, в связи с окон­чанием каледонского тектогенеза, испытывает   общее поднятие.

Геосинклинальные пояса

В мезозое процесс геосинклинального развития был выражен наи­более отчетливо и полно в Альпийско-Гималайском, а также в Тихооке­анском геосинклинальных поясах.
Альиийско — Гималайский пояс протягивался почти в ши­ротном направлении от Гибралтара до Восточных Гималаев. На севере он граничил с герцинидами Западно-Европейской и Скифской областей и Урало-Сибирского пояса, а на юге—с Индостанской и Африкано-Ара-вийской древними платформами и палеозойскими структурами Запад­ной Африки и Сицилии. Этот пояс, занятый морем Тетис, начал разви­ваться как типичная геосинклинальная зона в начале мезозоя, а на востоке еще в конце палеозоя. Он образовался за счет дробления гер­цинских сооружений Европейско-Азиатского палеозойского геосинкли­нального пояса. Его строение было очень сложным: он состоял из типич­ных геосинклинальных прогибов и отдельных массивов, которые пред­ставляли собой «обломки» герцинских, каледонских и более древних структур. В триасе в этом поясе на больших площадях господствовал морской режим и накапливались карбонатные и карбонатно-глинистые формации с редкими прослоями эффузивов.
На северном Кавказе триас распространен там же, где и верхний палеозой, и представлен главным образом известняками. Обломочные породы встречаются в основании триаса, а также слагают некоторые ярусы среднего и верхнего триаса. На пермских отложениях триас зале­гает с небольшим перерывом.
Наличие перерывов и горизонтов обломочных пород свидетельст­вует о поднятиях, в результате которых появлялись острова — источник обломочного материала.
В рэтическое время на Кавказе начинаются киммерийские движе­ния. Они приводят к поднятию значительных площадей и угловому не­согласию между рэтским ярусом и более древними отложениями. Рэтский ярус, составляющий единый комплекс с юрой, очень часто пред­ставлен угленосными отложениями.