Мезозойские рептилии. Динозавры

Динозавры — наиболее многочисленная группа мезозойских рептилий. Они жили на суше и были чрезвычайно разнообразны: среди них были и хищники, и растительноядные формы, размером от кошки до 40-метровых гигантов с массивным телом, маленькой головой, длинной шеей и очень большим длинным хвостом (роды Diplodocus, Brontosaurus). Головной мозг динозавров очень мал. Тело их было нередко покрыто панцирем, шипами, рогами и другими образованиями (роды Stegosaurus, Triceratops и др.). Передвигались динозавры на двух или четырех конечностях. В первом случае животные опирались на длинный хвост, а передние конечности были укорочены и служили для поддержания пищи. Некоторые из них (диплодоки, бронтозавры), как современные бегемоты, вели полуназемный образ жизни. Появи­лись динозавры еще в триасе. В конце мезозоя они вымерли.

Методы исторической геологии. Стратиграфия

Стратиграфия — это раздел геологии, занимающийся геохро­нологией, под которой понимают разделение геологической истории Земли на отдельные отрезки, этапы. Каждый этап был временем обра­зования толщ горных пород. Поэтому под геохронологией понимают так­же определение времени и последовательности образования пород. Различают относительную и абсолютную геохронологию.
Относительная геохронология определяет, какие породы образова­лись раньше и какие позднее, то есть относительный   возраст   пород.
Абсолютная геохронология определяет возраст пород в единицах времени, обычно в миллионах лет, то есть абсолютный возраст.
Стратиграфия решает две основные задачи:
определяет последовательность образования пород в каждом конкретном разрезе земной коры;
увязывает по возрасту породы, слагающие разные разрезы и в пределах одного района, и в разных районах.
Стратиграфия является той основой, на которой строится вся историческая геология, так как, систематизируя горные породы по времени их образования, она тем самым систематизирует события прошлого, характер которых выражен в особенностях пород.

Эпохи складчатости в истории земли

В пределах современных материков складчатый фундамент рас­пространен повсеместно. Это значит, что каждый участок земной коры в прошлом был геосинклинальной областью, которая в результате складкообразовательных движений и поднятий превратилась в склад­чатое сооружение. Тектонические движения являются основной причи­ной превращения геосинклинальных областей в платформы. Они про­исходили на Земле всегда, но интенсивность их была разной. Для тек­тонических движений характерна ритмичность их развития. Эти ритмы получили название эпох складчатости, тектонических этапов, или этапов тектогенеза. В геологической истории Земли устанавливается около десяти тектонических этапов, но лишь последние изучены более или менее хорошо.
Каждый тектонический этап был временем значительной пере­стройки земной коры: на месте геосинклинальных областей появля­лись складчатые области, усложнялось строение более древних склад­чатых сооружений, закладывались новые  геосинклинальные  области.

Силурийский период

В настоящее время в силурийскую систему входит только бывший верхний, готландский отдел. Деление силурийской системы на отделы и ярусы приведено в табл. 4.
Таблица 4
 
Силурийский период

 
Продолжительность этого периода 40 млн. лет.

Основные особенности развития земной коры и органического мира в палеозое

Палеозойская эра была временем очень больших преобразований. Она объединяет два тектонических этапа — каледонский и герцинский. В результате каледонских движений был ликвидирован геосинклиналь­ный режим в Северо-Атлантическом геосинклинальном поясе и на зна­чительных площадях Урало-Сибирского. Каледонские сооружения Севе­ро-Атлантического пояса соединили две платформы — Русскую и Ка­надскую, образовав большой Северо-Атлантический материк. Каледо-ниды Урало-Сибирского пояса, причленившись к Сибирской платформе, образовали вместе с ней другой большой материк — Ангариду. Услож­нилось также и строение других геосинклинальных областей.
Одновременно с ликвидацией геосинклинального режима и подня­тием горных сооружений в одних областях, в других в результате каледонских движений формировались зоны дробления и активного прогибания, которые дали начало новым геосинклинальным областям — Западно-Европейской и Скифско-Мангышлакской. Области прогиба­ния — межгорные впадины и прогибы возникали и в пределах молодых складчатых сооружений. Они являлись местом накопления мощных молассовых,   красноцветных,   эффузивных   и угленосных   отложений.
Значительные преобразования произошли и в строении древних платформ. В результате дифференцированных движений на них появи­лись синеклизы, впадины, прогибы, антеклизы. На Русской платформе образовалась впадина, которая к концу палеозоя оформилась в Москов­скую и Балтийскую синеклизы, и, очевидно, заложились Печорская, Прикаспийская и Польско-Германская синеклизы, а на Сибирской платформе — Вилюйская синеклиза и Путоранская впадина. Между синеклизами формировались антеклизы и другие поднятия фундамента.

Движения земной коры, палеогеография, осадконакопление

Киммерийский тектогенез ликвидировал геосинклинальный режим в одних геосинклинальных областях (Верхояно-Чукотская и др.), очень усложнил строение других (Альпийско-Гималайский пояс) и привел к образованию новых геосинклинальных поясов (Тихоокеанский). Эти пояса и области были построены очень сложно: глубокие котловины чередовались здесь с поднятиями, которые нередко отделяли эти кот­ловины друг от друга и от открытого моря, вследствие чего они пре­вратились в замкнутые и полузамкнутые котловины с застойным режи­мом, у дна которых создавалась бескислородная среда, благоприятная для развития серобактерий и нефтеобразования. Складкообразователь-ные движения в палеогене еще больше усложняют строение этих областей.
На платформах северного полушария, а также в северной части Африканской платформы и на западе Индийской платформы в палео­гене преобладат прогибание, которое приводит к расширению моря (рис. 93). Заканчивается палеогеновая история платформ их общим поднятием, и на всех материках устанавливается континентальный режим, господствующий здесь до настоящего времени.

Основные структурные элементы складчатых областей

Каждая складчатая область состоит из отдельных структурных элементов. Группируясь, они образуют крупные структуры — основные элементы складчатых областей. К ним относятся: антиклинории, синкли-нории, складчатые зоны, срединные остаточные массивы, массивы ран­ней консолидации (внутренние массивы), прогибы, впадины и глубин­ные разломы. Все это структуры первого порядка.
Антиклинории — это сложно построенные складчатые сооружения, в ядрах которых выходят породы нижних структурных этажей. Они возникают обычно на месте геоантиклинальных поднятий. Очень круп­ные, сложно построенные антиклинории называют мегантиклинориями.
Синклинории — это сложно построенные области прогибания, за­полненные смятыми в складки отложениями верхних структурных эта­жей. Синклинории возникают на месте   геосинклинальных   прогибов.
Антиклинории и синклинории, группируясь, образуют складча­тые  зоны.
Срединные остаточные массивы — это обломки существовавших ранее структур, на месте которых в процессе дробления сформирова­лись геосинклинальные прогибы. Эти массивы построены так же как и платформы. Они определяют простирание более молодых структур, ко­торые «обтекают» эти массивы.
Массивы ранней консолидации (внутренние массивы) — это уча­стки геосинклинальной области, испытавшие более раннюю складча­тость, чем вся остальная область. с них начинается «отмирание» этой области. В настоящее время эти массивы лежат в ядрах более моло­дых сооружений.
Впадины и прогибы образуются в момент поднятия молодой гор­ной страны, в орогенную стадию развития геосинклинальной области. Различают внутренние (межгорные) и краевые прогибы и впадины. Они образуются внутри складчатой страны за счет опускания отдель­ных ее участков, имеют обычно более или менее изометричную форму и ограничены зонами разломов, к которым приурочены излияния маг­мы. В этих впадинах накапливаются отложения орогенного яруса, сложенного молассой, красноцветными, угленосными, соленос-ными, нефтеносными и вулканогенными формациями. Мощность всех этих отложений около 10—15 км, а иногда и несколько больше. Зале­гают они обычно почти спокойно, и только по окраинам, в приразлом-ных частях, наблюдаются линейные складки с довольно крутыми уг­лами падения.

Ангаро-ленскии краевой прогиб

Этот прогиб расположен к западу и северу от Байкальской склад­чатой области. Он отделяет байкалиды юга Сибирской платформы от «е эпикарельской части. Ангаро-Ленский прогиб формировался в мо­мент активного складкообразования и поднятия Байкальской складча­той зоны, т. е. в конце докембрия и в начале кембрия. Он заполнен мощной (3000—4000 м) толщей преимущественно нижнекембрийских отложений.
Ближе к байкальским складчатым сооружениям нижний кем­брий представлен алданским и ленским ярусами. Алданский ярус сложен терригенными породами, содержащими линзы и пласты гипса и каменной соли. В этих породах содержится много спор. Все это мо-лассовые отложения, накоплявшиеся у подножия байкалид на при­брежной морской равнине. Ленский ярус представлен известняками с богатой фауной трилобитов и брахиопод. Во внутренних частях Ангаро-Ленского прогиба мощность кембрийских отложений меньше — око­ло 2500 м, алданский ярус почти выклинивается, а известняки ленско­го яруса сменяются соленосной формацией.
Нижнекембрийские отложения в зоне прогиба, прилежащей к бай-калидам, смяты в линейные складки северо-восточного простирания. Дальше от байкальских сооружений развиты только узкие длинные асимметричные антиклинальные складки, разделенные участками с го­ризонтальным залеганием, а еще дальше на северо-запад и юг распро­странены уже плакантиклинали и валы. Все эти образования перекры­ты широко распространенными палеонтологически немыми красноцвет-яыми континентальными песчано-глинистыми отложениями верхолен-ской свиты верхнего кембрия, мощностью до 800 м.

Таймыр

Это крайний северо-восточный выступ герцинского фундамента Урало-Сибирской платформы, пока что еще мало изученный. От Си­бирской платформы Таймыр отделен Хатангским прогибом. На Таймы­ре выделяется три зоны: 1) краевой прогиб, 2) зона карбонатных от­ложений палеозоя, 3) антиклинорий Северного Таймыра.
Краевой прогиб сложен верхним карбоном, пермью и нижним триасом. Это морские песчано-глинистые отложения иногда флишево-го типа с прослоями углей и базальтовых траппов. Они смяты в резко выраженные линейные складки.
К северо-западу от прогиба располагается зона карбонатных па­леозойских отложений, похожих на палеозойские карбонатные отложе­ния Сибирской платформы и Верхояно-Чукотских киммерид. Эти отло­жения слагают огромный синклинории сложного строения.
Антиклинорий Северного Таймыра сложен в основном докембрий-скими метаморфическими толщами, проранными интрузиями нижне­палеозойских и девонских гранитов. До недавнего времени антиклино­рий Северного Таймыра относили к каледонским структурам. Уста­навливается также сходство этих структур с мезозоидами Тихоокеан­ского сегмента земной коры.

Полезные ископаемые

Полезные ископаемые эндогенного происхождения на Кавказе распространены в области антиклинориев и связаны с палео­зойскими и мезозойскими интрузиями. К последним приурочены наи­более богатые месторождения. На северном склоне Кавказа это Садон-ское свинцово-цинковое месторождение, а на южном — Дзишра. Тыр-ны-Аузская группа вольфрамо-молибденовых месторождений имеет также мезозойский возраст. В области Малого Кавказа медные и мед-но-полиметаллические, свинцово-цинковые и серноколчеданные место­рождения связаны с юрскими вулканогенными толщами Сомхето-Карабахского антиклинория, а к меловым гранодиоритам этого антикли­нории приурочено Дашкесанское месторождение железа, а также мел­кие месторождения меди и полиметаллов. С палеозойскими интрузиями и эффузивными толщами связаны редкометальные и медноколчеданные (Урупское) месторождения, а также золото и полиметаллы (Эльбрусское и др.). Третичный магматический комплекс Зангезурского района богат молибденом и медью.
Кроме -вышеперечисленных полезных ископаемых известны также ртуть и некоторые другие.