Палеонтология

Палеонтология изучает древний органический мир Земли по ока­меневшим его остаткам — окаменелостям (скелеты и их части, рако­вины, окаменевшие и обугленные растительные остатки, отпечатки, следы ползания, отпечатки лап животных, ходы червей и др.), сохранив­шимся в земной коре.
Палеонтология делится на палеозоологию и палеобота­нику. Палеозоология изучает древний животный мир. Она делится в свою очередь на палеозоологию беспозвоночных и палеозоологию позвоночных. Палеоботаника изучает древ­ние растения.
Палеонтология очень тесно связана с биологией (неонтологией), которая изучает современный органический мир Земли. Между ними нет резкой грани, так как многие современные организмы появились на Земле давно и нередко встречаются в ископаемом состоянии. Пале­онтология и биология вместе решают проблему возникновения и раз­вития жизни на Земле.
Палеонтология очень тесно связана и с науками геологического цикла: с исторической геологией, литологией, учением о фациях. Она помогает определять последовательность образования древних пород и условия их образования. С другой стороны, органический мир Земли развивался в тесной связи с развитием земной коры и Земли в целом и потому выяснение истории развития органического мира невозможно без изучения тех процессов и изменений, которые происходили на Зем­ле в прошлом.

Класс трилобитов (trilobita)

Трилобиты жили в морях на различной, чаще небольшой, глубине, плавая у дна или ползая по дну. Не исключена возможность, что неко­торые трилобиты жили в пелагической области моря и вели нектонный и даже планктонный (мелкие трилобиты с длинными шипами) образ жизни.
Трилобиты имели членистое тело, покрытое хитиновым панцирем, пропитанным углекислым  или  фосфорнокислым  кальцием.  Периоди­чески панцирь сбрасывался, и в это время, до появления нового пан­циря, животное росло. Со спинной стороны панцирь трилобитов был более толстый, прочный и потому в ископаемом состоянии встречается именно эта его часть. В продольном направ­лении панцирь делился на три части («трилобос» — трех­членный): срединную, обычно более выпуклую, и две бо­ковые. В поперечном направлении    панцирь также де­лится на три части: переднюю — головной щит, ред­нюю— туловищый  щит   (отдел) и  заднюю — хво­стовой  щит.  Головной щит образовался за счет сра­стания передних, а хвостовой — задних члеников, на что   указывают борозды в области этих щитов. Членики туловищного щита (от 2 до 44) сочленялись подвижно, в результате чего многие трилобиты могли свертываться, под­жимая головной щит к хвостовому.   Это   позволяло   им прятать менее защищенную брюшную   часть, прикрытую более тонким покровом.

Тип хордовые (chordata)

Хордовые — двустороннесимметричные животные. Название тип» происходит от двух слов — chorda dorsalis — спинная струна. Она пред­ставляет собой сплошной гибкий стержень, являющийся внутренним осевым скелетом. У низших хордовых этот стержень сохраняется в те­чение всей жизни. У высших же — лишь на ранних стадиях индиви­дуального развития, замещаясь позже позвоночным столбом — columna vertebralis. Отсюда и их название — позвоночные — Verteb-rata.
Тип хордовых объединяет три подтипа: 1) оболочники — Tunicata, 2) бесчерепные — Асгапіа и 3) позвоночные, или черепные — Verteb­rate, или Craniota. Ныне известные ископаемые хордовые относятся к подтипу позвоночных.

Сбор ископаемых остатков

Окаменелости представляют очень ценный геологический материал только в том случае, если они собраны правильно, полно и детально. Ниже перечисляются некоторые основные правила, которые должны соблюдаться при сборе палеонтологических остатков.
Отбирать органические остатки следует строго послойно.
Сборы по возможности должны быть массовыми. Следует ото­брать все разновидности окаменелостей, встреченные в слое. Если же материал отбирается не весь, нужно брать образцы так, чтобы количе­ство преобладающих форм было больше, более редких — меньше, еще реже встречающихся — еще меньше и так далее (или хотя бы отметить это в полевой книжке).
При сборе растительных остатков должны быть взяты все части растения, так как определение систематического положения ископае­мых растений по отдельным его частям — задача очень трудная, а иногда и неразрешимая. Особенно внимательно нужно искать отпе­чатки плодов, семян, цветков.
Не следует освобождать окаменелости от вмещающей породы, так как она улучшает сохранность образца и помогает выяснять обста­новку захоронения и окаменения. Для характеристики степени сорти­ровки, сохранности, для изучения ориентировки фауны, явлений при­крепления, следов жизнедеятельности и для выяснения направления течений и других целей следует брать, когда это возможно, плиты с фауной. В этом случае помечают верхнюю и нижнюю поверхность образца и ориентируют образцы по странам света.

Методы восстановления характера и возраста движении земной коры

Земная кора испытывает движения двух основных типов: медлен­ные колебательные и дислокационные.
Медленные колебательные движения происходят не­прерывно в пределах всей земной коры: скорости и амплитуды этих движений очень невелики. Они не вызывают резких нарушений перво­начального залегания горных пород. Эти движения приводят к пере­распределению морских бассейнов и участков суши и являются причи­ной чередования в разрезе земной коры морских и континентальных от­ложений.
Для дислокационных движений характерно, что их ампли­туда, скорость и градиент значительно больше. Эти движения приводят к изменениям первичного залегания пород, т. е. к появлению различных дислокаций. Характер и возраст медленных колебательных и дислока­ционных движений восстанавливаются путем изучения разрезов земной коры.
Для изучения медленных колебательных движений. А. П. Карпин­ский еще в 80-е годы 19 века применил и разработал палеогеогра­фический метод. В основе этого етода лежит представление о том, что перемещение береговой линии моря является результатом ко­лебательных движений земной коры. Изучение разрезов земной коры позволяет составить представление о времени и знаке этих движений и построить палеогеографическую кривую, или кривую смены фаций (рис. 71).

Платформы

Русская платформа. Нижнекембрийские отложения, пред­ставленные песками и глинами с морской фауной, выходят на поверх­ность по побережью Финского залива. Они прослеживаются до Во­логды, за Валдай и в Подолии. В центральных и северных частях плат­формы развиты континентальные песчано-глинистые толщи, содержа­щие споры нижнего кембрия. Все эти породы представляют отложения неглубоких эпиконтинентальных морей и примыкающих к ним равнин. На востоке и юге кембрий не установлен.
Средний и верхний кембрий известны только на северо-западной окраине платформы, в области южной Швеции, где они представлены морскими сравнительно глубоководными отложениями (рис. 79).
Все это позволяет сделать вывод о том, что в раннем кембрии на северо-западе и юго-западе платформы развивалась трансгрессия, которая пришла из Грампианской геосинклинальной области, та как именно в этом направлении растет мощность кембрийских отложений, и они становятся все более глубоководными. В среднем и позднем кем­брии вся Русская платформа (за исключением Южной Швеции) при­поднимается, здесь устанавливается континентальный режим, и преоб­ладают процессы не осадконакопления, а размыва.

Платформы

Русская платформа. По площади распространения каменно­угольные отложения занимают здесь второе место после девона. Выхо­ды карбона известны в Московской   синеклизе,   на Тимане и в других областях. В отличие от девона каменноугольная система представлена всеми отделами и ярусами, хотя многие из них распространены не пов­семестно и разрезы карбона в разных местах не одинаковы. Чаще всего каменноугольные отложения сложены карбонатными породами: изве­стняками, доломитизированными известняками и доломитами (рис. 87), мощность которых измеряется сотнями метров (более 500 м). Все эти породы накапливались в море, которое появляется на Русской платфор­ме уже в турнейском веке. Турнейское море занимало западную, восточ­ную и центральную области Русской платформы. Северная ее часть была приподнятой, возвышенной сушей.

Геосинклинальные пояса

В Альпийско-Гималайском поясе в меловое время складкообразовательные движения развиваются слабее, чем в юре, и уже в начале мелового периода здесь происходит прогибание и раз­вивается трансгрессия.
На Кавказе уже существовала в виде узкого длинного острова осевая часть Главного Кавказского хребта, являющаяся источником терригенного материала. К югу от этого острова в области южного склона Большого Кавказа накапливались терригенные флишевые толщи, а также толщи туфогенных пород, В зоне северного склона в это время образуются преимущественно мергельно-меловые толщи. С меловыми отложениями северного склона Кавказа связаны месторождения нефти и газа.
В Западно-Тихоокеанской области в нижнемеловое время заканчивается киммерийская складчатость и происходит общее поднятие складчатых сооружений. На поднимающемся континенте во впадинах и на предгорных равинах, как и в верхней юре, накапли­ваются угленосные толщи (Сучанский и Зыряновский угольные бас­сейны). В верхнемеловое время эта область уже была молодой горной страной, и здесь лишь местами накапливались континентальные, часто угленосные отложения сравнительно небольшой мощности. В некоторых местах развиты эффузивы.

Эволюция органического мира

Изучение ископаемых остатков животных и растений с несомнен­ностью доказывает, что эти изменения носили направленный характер: органический мир Земли развивался, эволюционировал в сторону по­явления все более высокоорганизованных форм.
Эволюция органического мира, его направленное развитие — пер­вая, главная закономерность развития органиче­ского мира Земли.
Вторая закономерность — чередование длительных эта­пов медленных и постепенных изменений органического мира с относи­тельно более короткими этапами значительных и очень крупных пре­образований. Для иллюстрации этого положения достаточно вспом­нить о тех изменениях, которые произошли в составе флоры и фауны в конце палеозоя и мезозоя. Тогда имело место вымирание за сравни­тельно короткий срок многих более древних групп, на смену которым приходили новые, более высокоорганизованные.
Третья закономерность заключается в том, что ратения в своем развитии опережали животных и «обновление» флоры проис­ходило на полпериода раньше, чем «обновление» фауны. Несомненно, это связано с тем, что наземные организмы, особенно растения, наибо­лее чувствительны ко всем климатическим изменениям и они первые реагировали на эти изменения. Очевидно существуют и иные, пока что неизвестные нам причины такого опережающего развития ра­стений.

Сибирская платформа

Сибирская платформа расположена между pp. Енисей и Лена, южной оконечностью оз. Байкал и Хатангским прогибом (см. рис. 96). Она занимает западную часть Восточной Сибири. На западе границу Сибирской платформы проводят по геофизическим данным на 100— 200 км западнее р. Енисей от г. Красноярска на юге до Енисейского за­лива (несколько южнее него) на севере. Далее она почти под прямым углом поворачивает на восток и, пересекая 72 параллель, идет к бухте Нордвик, а отсюда к устью р. Лены. Здесь граница платформы снова под прямым углом поворачивает к югу и по Приверхоянскому прогибу проходит вдоль Лены до впадения в нее Алдана, а затем следует уже вдоль Алдана и Сеттэ-Дабанского антиклинория. С последним она гра­ничит по зоне разломов. В области этого антиклинория граница плат­формы, сделав еще один поворот, проходит уже в меридиональном на­равлении и выходит к Охотскому морю. Отсюда она поворачивает на запад и, проходя по границе Станового хребта с Тукурингро-Джагдин-ским антиклинорием, тянется к южной оконечности оз. Байкал. Далее она поворачивает на северо-запад и по водораздельному гребню Вос­точных Саян выходит снова к Красноярску.
Фундамент Сибирской платформы, так же как и Русской, был сформирован в докембрийское время в результате саамской, карельской п байкальской эпох складчатости. Байкалиды слагают фундамент плат­формы на юго-западе и западе, а также в Вилюйской синеклизе. В других областях платформы он сложен саамидами и карелидами. Об­ласти беломорской складчатости пока не установлены. Известны лишь многочисленные магматические породы, по времени образования соот­ветствующие беломорскому циклу.